The Hubbard-Stratonovich transformation - Exercises
In this problem, we are going to show that the mean field theory (MFT) is exact for the infinite-range Ising model. Let's consider the Ising Hamiltonian
$$\begin{align}
H = -\frac{1}{2}\sum_{ij}J_{ij}S_iS_j
\end{align}$$
and assume that \(J_{ij}\) has the same value for any sites \(i,j\). In particular, let \(J_{ij} = J/N\), where \(N\) is the total number of sites.
Show that the Ising model Hamiltonian in this case is
$$\begin{align}
H = -\frac{J}{2N}\left(\sum_i S_i\right)^2
\end{align}$$
The Hubbard-Stratonovich transformation is easier in this case, because \(\sum_i S_i\) can be treated as one variable. Show that the partition function becomes (apart from a non-essential prefactor \(\sqrt{N/(2\pi JT)}\)
$$\begin{align}
Z = \sum_{\{S\}}\int_{-\infty}^\infty e^{-\frac{N}{2JT}\varphi^2 + \frac{\varphi}{T}\sum_i S_i}\d\varphi = \int_{-\infty}^\infty e^{-NS[\phi]} \d\varphi
\end{align}$$
and write down the expression for \(S[\varphi]\).
Write down the equation for \(\bar{\varphi}\) that minimizes \(S[\varphi]\).
Expand \(S[\varphi]\) around the value \(\bar{\varphi}\) that minimizes it (without explicitly calculating \(\bar{\varphi}\) and \(\d^2S/\d\varphi^2\)), calculate the free energy and show that in the limit \(N\to\infty\) you get
$$\begin{align}
F = NTS[\bar{\varphi}]
\end{align}$$
This is trivial, as we can write
$$\begin{align}
H = -\frac{1}{2N}J \sum_{ij} S_i S_j = -\frac{J}{2N}\left(\sum_i S_i\right)^2
\end{align}$$
We can write
$$\begin{align}
e^{\beta J(\sum S)^2/2N} = e^{b^2/4a}
\end{align}$$
where we set \(b = \beta \sum S\), and \(a = \frac{N}{2J T}\). Thus
$$\begin{align}
\int_{-\infty}^\infty e^{-\frac{N}{2JT}\varphi^2 + \frac{\varphi}{T}\sum_i S_i} \d\varphi = e^{\beta J (\sum S)^2 /2N}
\end{align}$$
Thus, the partition function is
$$\begin{align}
Z = \sum_{\{S\}} e^{-\beta H} = \sum_{\{S\}} \int_{-\infty}^\infty e^{-\frac{N}{2JT}\varphi^2 + \frac{\varphi}{T}\sum_i S_i} \d\varphi
\end{align}$$
We can now exactly evaluate the sum over \(\{S\}\). This gives us
$$\begin{align}
Z = \int_{-\infty}^\infty e^{-\frac{N}{2JT}\varphi^2}\left[2\cosh\frac{\varphi}{T}\right]^N \d\varphi
\end{align}$$
We can rewrite this as
$$\begin{align}
Z = \int_{-\infty}^\infty e^{-NS} \d\varphi
\end{align}$$
where
$$\begin{align}
S[\varphi] = \frac{1}{2JT}\varphi^2 - \log\cosh\frac{\varphi}{T}
\end{align}$$