Berry Phase and Curvature
Consider an adiabatically transported parameter. The Hamiltonian is \(\Hhat = \Hhat(\boldsymbol{\lambda}(t))\), where \(\boldsymbol{\lambda}\) are parameters of the Hamiltonian. We assume that the internal frequency is much greater than teh external frequency. Goal: calculate how an eigenstate of the Hamiltonian at fixed poarameter varies with time. If \(\Hhat\) is independnet of time, then a particle starting in the \(n\)th eigenstate
\[\Hhat\psi_n = E_n\psi_n\]will stay in the \(n\)th eigenstate. If, on the other hand, \(\Hhat\) depends on time, then
\[\Hhat(t) \psi_n(t) = E_n(t) \psi_n(t)\]But, we still have \(\bra{\psi_n(t)}\ket{\psi_m(t)} = \delta_{mn}\).. Also, we still have \(i\hbar \partial_t \psi(t) = \Hhat(t) \psi(t)\). Thus,
\[\psi(t) = \sum_n c_n(t) \psi_n(t) e^{i\theta_n(t)}\]where \(\theta_n = -\frac{1}{\hbar}\int_0^t E_n(t’) \d t’\). In the Schrödinger equation, we have that
\[\begin{align} i\hbar\partial_t\sum_n c_n(t) e^{i\theta_n(t)} \psi_n(t) ={}& \sum_n c_n(t) e^{i\theta_n(t)} \Hhat(t)\psi_n(t) \\ i\hbar\sum_n \dot{c}_n(t) e^{i\theta_n(t)} \psi_n(t) + i\hbar \sum_n c_n(t) e^{i\theta_n(t)} \dot{\psi}_n(t) - \hbar \sum_n \dot{\theta}_n(t) c_n(t) \psi_n(t) e^{i\theta_n(t)} ={}& \sum_n c_n(t) e^{i\theta_n(t)} E_n(t)\psi_n(t) \\ \end{align}\]But, \(\theta_n(t) = -\frac{1}{\hbar}\int_0^t E_n(t’) \d t’\), so \(\dot{\theta}_n = -E_n(t)/\hbar\). Thus, we have that
\[\sum_n \left[\dot{c}_n(t) e^{i\theta_n(t)}\psi_n(t) + c_n(t) e^{i\theta_n(t)} \dot{\psi}_n(t)\right] = 0\]Now, we want to solve for \(c_n(t)\). We can derive an ODE for these constants. To do this, we can take the inner prdouct on both sides as
\[\sum_n \left[\dot{c}_n(t) e^{i\theta_n(t)} \bra{\psi_m(t)}\ket{\psi_n(t)} + c_n(t) e^{i\theta_n(t)} \bra{\psi_m(t)}\ket{\dot{\psi}_n(t)}\right] = 0\]Thus, solving, we have (note that we used \(\bra{\psi_m(t)}\ket{\psi_n(t)} = \delta_{mn}\),
\[\dot{c}_m(t) e^{i\theta_m(t)} = -\sum_n c_n(t) e^{i\theta_n(t)} \bra{\psi_m(t)}\ket{\dot{\psi}_n(t)}\]and finally,
\[\dot{c}_m(t) = -\sum_n c_n(t) e^{i(\theta_n(t) - \theta_m(t))} \bra{\psi_m(t)}\ket{\dot{\psi}_n(t)}\]We want to find an expression for \(\ket{\dot{\psi}_n(t)}\). For this, let us differentiate both sides of the Schrödinger equation:
\[\dot{\Hhat}(t)\ket{\psi_n(t)} + \Hhat(t)\ket{\dot{\psi}_n(t)} = \dot{E}_n(t)\ket{\psi_n(t)} + E_n(t)\ket{\dot{\psi}_n(t)}\]Now taking the bra \(\bra{\psi_m(t)}\) on both sides, we have
\[\begin{align} \bra{\psi_m(t)}\dot{\Hhat}(t)\ket{\psi_n(t)} + \bra{\psi_m(t)}\Hhat(t)\ket{\dot{\psi}_n(t)} ={}& \bra{\psi_m(t)}\dot{E}_n(t)\ket{\psi_n(t)} + \bra{\psi_m(t)}E_n(t)\ket{\dot{\psi}_n(t)} \\ \bra{\psi_m(t)}\dot{\Hhat}(t)\ket{\psi_n(t)} + E_m(t)\bra{\psi_m(t)}\ket{\dot{\psi}_n(t)} ={}& \dot{E}_n(t)\delta_{mn} + E_n(t)\bra{\psi_m(t)}\ket{\dot{\psi}_n(t)} \end{align}\]Thus,
\[(E_n(t) - E_m(t))\bra{\psi_m(t)}\ket{\dot{\psi}_n(t)} = \bra{\psi_m(t)}\dot{\Hhat}(t)\ket{\psi_n(t)} - \dot{E}_n(t)\delta_{mn}\]Now, we split the sum for the \(c\) equation
\[\begin{align} \dot{c}_m(t) ={}& - c_m(t) \bra{\psi_m(t)}\ket{\dot{\psi}_m(t)} -\sum_{n\neq m} c_n(t) e^{i(\theta_n(t) - \theta_m(t))} \bra{\psi_m(t)}\ket{\dot{\psi}_n(t)} \\ ={}& - c_m(t) \bra{\psi_m(t)}\ket{\dot{\psi}_m(t)} - \sum_{n\neq m} c_n(t) e^{i(\theta_n(t) - \theta_m(t))} \frac{\bra{\psi_m(t)}\dot{\Hhat}(t)\ket{\psi_n(t)}}{E_n(t) - E_m(t)} \\ \end{align}\]Since we have assumed that the internal frequencies are much faster than the external frequencies, \(\dot{\psi}_m(t)\) has an internal frequency, but \(\dot{\Hhat}(t)\) has an external frequency, we drop the sum. Thus, we have
\[\begin{align} \dot{c}_m(t) ={}& - c_m(t) \bra{\psi_m(t)}\ket{\dot{\psi}_m(t)} \end{align}\]Now that the equations are decoupled, we can solve this as
\[c_m(t) = c_m(0)\exp\left(-\int_0^t \bra{\psi_m(t)}\ket{\dot{\psi}_m(t)}\d t\right)\]Now, substituting this back in, we find
\[\ket{\psi}(t) = \sum_n c_n(0) e^{i\gamma_n(t)} e^{i\theta_n(t)} \ket{\psi_n(t)}\]where we have defined
\[\gamma_n(t) = i\int_0^t \bra{\psi_n(t')}\ket{\dot{\psi}_n(t')}\d t'\]We can rewrite this as
\[\gamma_n(t) = i\int_{\boldsymbol{\lambda}(0)}^{\boldsymbol{\lambda}(t)} \bra{\psi_n(\boldsymbol{\lambda})}\nabla_{\boldsymbol{\lambda}}\ket{\psi_n(\boldsymbol{\lambda})} \cdot \d \boldsymbol{\lambda}\]Then, we define
\[\mathbf{A}_n = -i\bra{\psi_n(\boldsymbol{\lambda})}\nabla_{\boldsymbol{\lambda}}\ket{\psi_n(\boldsymbol{\lambda})}\]so that
\[\gamma_n(t) = -\int_{\boldsymbol{\lambda}(0)}^{\boldsymbol{\lambda}(t)} \mathbf{A}_n(\boldsymbol{\lambda}) \cdot \d\boldsymbol{\lambda}\]If the parameters \(\boldsymbol{\lambda}(t)\) depend on \(t\) in a way that returns after \(t=T\) seconds, then
\[\gamma_n = -\oint \mathbf{A}_n(\boldsymbol{\lambda}) \cdot \d\boldsymbol{\lambda}\]Now, we make the observation that, since the Hamiltonian depended on time only via the parameters \(\hat{H}(t) = \hat{H}(X(t))\), we can use the chain rule:
\[\begin{equation} \frac{\partial}{\partial t}\ket{\phi_m(t)} = \frac{\partial}{\partial t}\ket{\phi_m(<b>X</b>(t))} = \frac{\partial}{\partial<b>X</b>}\ket{\phi_m(<b>X</b>)} \cdot\frac{\d <b>X</b>}{\d t} \end{equation}\]Thus we rewrite the formula for the geometric phase as
\[\begin{equation} \gamma_m(t) = i\int_0^t \bra{\phi_m(<b>X</b>(t'))}\frac{\partial}{\partial <b>X</b>}\ket{\phi_m(<b>X</b>(t'))} \cdot \frac{\d<b>X</b>}{\d t'}\d t' \end{equation}\]We recognize that this can be rewritten in terms of a line integral through parameter space:
\[\begin{equation} \gamma_m(t) = -i\int_{<b>X</b>(0)}^{<b>X</b>(t)} \bra{\phi_m(<b>X</b>)}\frac{\partial}{\partial <b>X</b>}\ket{\phi_m(<b>X</b>)} \cdot\d<b>X</b> \end{equation}\]Now, we finally can write
\[\begin{equation} \ket{\Psi(t)} = \sum_n a_n(0)e^{i(\theta_n(t) - \gamma_n(t))} \ket{\phi_n(t)}. \end{equation}\]So the time evolution is simply the standard one: if the system is starts out in an eigenstate \(\ket{\phi_n(t)}\), then it stays in that eigenstate and is modified only by a phase factor. In the special case that the parameter \(X\) goes around a closed loop, the geometric phase is instead called the Berry phase, and can be written as
\[\begin{equation} \gamma_m = -i\oint_C \bra{\phi_m(<b>X</b>)}\frac{\partial}{\partial <b>X</b>}\ket{\phi_m(<b>X</b>)} \cdot\d<b>X</b> \end{equation}\]Let’s now turn to a discussion of the Berry phase. We define the quantity
\[\begin{equation} <b>A</b>_m = -i\bra{\phi_m(<b>X</b>)}\frac{\partial}{\partial <b>X</b>}\ket{\phi_m(<b>X</b>)} \end{equation}\]where \(A\) is a vector field with the same number of components as \(X\). In the special case where the parameter space is 3-dimensional, then we can apply Stoke’s theorem to rewrite the Berry phase as
\[\begin{equation} \gamma_m = \iint \nabla\times<b>A</b>_m \cdot \nhat\d S. \end{equation}\]This resembles the integral of a magnetic field \(B = \nabla\timesA\) over a closed surface, which is interpreted as the flux! Of course, this vector field has, in general, nothing to do with an actual magnetic field; the similarity is purely mathematical. We call the quantity \(A\) the Berry connection and \(B\) the Berry curvature. There is an interpretation of the field \(A\) as a connection in the differential geometric sense, and we will discuss that in an aside section later.