1. For a free particle in one dimension, whose Hamiltonian is \(\)\Hhat = \frac{\phat^2}{2m}\(\) compute the propagator \(K(x,t;x',0)\).
    We simply compute $$\begin{align} \bra{x} e^{-i\phat t/2m\hbar} \ket{x'} ={}& \int_{-\infty}^\infty \bra{x} e^{-i\phat^2 t/2m\hbar} \ket{p}\bra{p} \ket{x'} \d p \\ ={}& \int_{-\infty}^\infty e^{-ip^2 t/2m\hbar}\bra{x}\ket{p}\bra{p}\ket{x'} \d p \\ ={}& \int_{-\infty}^\infty e^{-ip^2 t/2m\hbar} e^{ip(x-x')/\hbar} \frac{\d p}{2\pi\hbar} \end{align}$$ Now, we complete the square. This allows us to evaluate the integral exactly $$\begin{align} \bra{x} e^{-i\phat t/2m\hbar} \ket{x'} ={}& \int_{-\infty}^\infty \exp\left(-\frac{it}{2m\hbar}\left(p - m\frac{x-x'}{t}\right)^2\right) e^{im(x-x')^2/2m\hbar t} \frac{\d p}{2\pi\hbar} \\ ={}& e^{im(x-x')^2/2m\hbar t} \int_{-\infty}^\infty \exp\left(-\frac{it}{2m\hbar}p^2\right) \frac{\d p}{2\pi\hbar} \\ ={}& \frac{e^{im(x-x')^2/2m\hbar t}}{2\pi\hbar} \sqrt{\frac{2m\hbar\pi}{it}} \\ ={}& e^{im(x-x')^2/2m\hbar t}\sqrt{\frac{m}{2\pi i\hbar t}} \end{align}$$