Pairing and Superconductivity - Exercises
- Verify the Hubbard-Stratonovich calculation.$$\begin{align} \int \exp\left(-\frac{1}{U}\Delta^{*}\Delta - \Delta \bar{c}_{i\uparrow}\bar{c}_{i\downarrow} - \Delta^{*} c_{i\downarrow} c_{i\uparrow}\right)\d\Delta^{*}\d\Delta ={}& \int\exp\left(-\frac{1}{U}\left[\Delta^{*}\Delta + \Delta\bar{c}_{i\uparrow} \bar{c}_{i\downarrow}\right]\right) \\ ={}& e^{U\bar{c}_{i\uparrow}\bar{c}_{i\downarrow}c_{i\downarrow}c_{i\uparrow}} \end{align}$$
-
- Evaluate the Matsubara sum in the pair bubble
- Now set \(\k = 0\) and also \(k_0 = 0\) and and write the momentum sum as an integral over energy. Assume that the energies of the conduction electrons relative to the chemical potential range between \(-D\) and \(+D\). Furthermore, assume a constant density of states, and that the dispersion relation has inversion symmetry.
- First, we evaluate the Matsubara sum. $$\begin{align} \frac{1}{\beta}\sum_{ip_0}\mathcal{G}_0(k-p)\mathcal{G}_0(p) ={}& \frac{1}{\beta}\sum_{ip_0}\frac{1}{ik_0 - ip_0 - \xi_{\k-\p}}\frac{1}{ip_0 - \xi_{\p}} \\ ={}& -\frac{n_F(-\xi_{\k-\p})}{ik_0 - \xi_{\k-\p} - \xi_{\p}} + \frac{n_F(\xi_{\p})}{ik_0 - \xi_{\p} - \xi_{\k-\p}} \\ ={}& \frac{n_F(\xi_{\p}) - n_F(-\xi_{\k-\p})}{ik_0 - \xi_{\k-\p} - \xi_{\p}} \\ ={}& \frac{n_F(-\xi_{\k-\p}) - n_F(\xi_{\p})}{\xi_{\k-\p} + \xi_{\p} - ik_0} \\ ={}& \frac{1 - n_F(\xi_{\k-\p}) - n_F(\xi_{\p})}{\xi_{\k-\p} + \xi_{\p} - ik_0} \end{align}$$
- The pair bubble can now be written as $$\begin{equation} \pi(\k,ik_0) = \frac{1}{N_s}\sum_{\p} \frac{1 - n_F(\xi_{\k-\p}) - n_F(\xi_{\p})}{\xi_{\k-\p} + \xi_{\p} - ik_0}. \end{equation}$$ Now, we set \(\k = 0\). This is equivalent to looking for a uniform solution for the order parameter \(\Delta\). $$\begin{equation} \pi(0,0) = \frac{1}{N_s}\sum_{\p} \frac{1 - n_F(\xi_{-\p}) - n_F(\xi_{\p})}{\xi_{\k-\p} + \xi_{\p} - ik_0}. \end{equation}$$ Since the dispersion relation is even in \(\p\), \(\xi_{-\p} = \xi_{\p}\). Thus, $$\begin{align} \pi(0,0) ={}& \frac{1}{N_s}\sum_{\p} \frac{1 - 2n_F(\xi_{\p})}{2\xi_{\p}} \\ ={}& \frac{1}{N_s}\sum_{\p} \frac{1}{2\xi_{\p}}\left(1 - \frac{2}{1+e^{\beta\xi_{\p}}}\right)\\ ={}& \frac{1}{N_s}\sum_{\p} \frac{1}{2\xi_{\p}}\left(\frac{1+e^{\beta\xi_{\p}} - 2}{1+e^{\beta\xi_{\p}}}\right) \\ ={}& \frac{1}{N_s}\sum_{\p} \frac{1}{2\xi_{\p}}\left(\frac{e^{\beta\xi_{\p}} - 1}{1+e^{\beta\xi_{\p}}}\right) \\ ={}& \frac{1}{N_s}\sum_{\p} \frac{1}{2\xi_{\p}}\left(\frac{e^{\beta\xi_{\p}/2} - e^{-\beta\xi_{\p}/2}}{e^{\beta\xi_{\p}/2}e^{-\beta\xi_{\p}/2}}\right) \\ ={}& \frac{1}{N_s}\sum_{\p} \frac{1}{2\xi_{\p}}\tanh\left(\frac{\beta\xi_{\p}}{2}\right) \end{align}$$ Now, we evaluate the sum over \(\p\) by changing it to an integral over energy \(\xi\): $$\begin{equation} \pi(0,0) = \frac{V}{N_s}\int_{-D}^D \frac{\tanh(\beta\xi/2)}{2\xi}\rho(\xi)\d\xi. \end{equation}$$ We assume that \(\rho\) is roughly constant, and pull out \(\rho\) from the integral: $$\begin{align} \pi(0,0) ={}& \frac{V\rho }{N_s}\int_{-D}^D \frac{\tanh(\beta\xi/2)}{2\xi}\d\xi \\ ={}& \frac{V\rho }{N_s}\int_0^D \frac{\tanh(\beta\xi/2)}{\xi}\d\xi \end{align}$$ We now change to the dimensionless variable \(x = \beta\xi/2\). Then $$\begin{align} \pi(0,0) ={}& \frac{V\rho }{N_s}\int_0^{\beta D/2} \frac{\tanh x}{x}\d x \\ ={}& \frac{V\rho}{N_s}\left[ \tanh x \log x\bigg|_0^{\beta D/2} - \int_0^\infty \frac{\log x}{\cosh^2 x}\d x\right] \\ ={}& \tilde{\rho} \left[\log\left(\frac{\beta D}{2}\right) - \log\frac{\pi}{4} + \gamma \right] \\ ={}& \tilde{\rho} \log\left(\frac{2 \beta D e^{\gamma}}{\pi} \right) \end{align}$$ where we have used the fact that \(\beta D \gg 1\) and also that $$\begin{equation} \int_0^\infty \frac{\log x}{\cosh^2 x}\d x = \log\frac{\pi}{4} - \gamma \end{equation}$$ where \(\gamma\) is the Euler-Mascheroni constant. We also defined \(\tilde{\rho} = V\rho/ N_s\) to be the density of states per site.